Координаты в геодезии

Системы координат, используемые в геодезии

Предмет и задачи инженерной геодезии

Геодезия — наука, изучающая форму и размеры Земли, геодезические приборы, способы измерений и изображений земной поверхности на планах, картах, профилях и цифровых моделях местности. В современной геодезии находят применение новейшие измерительные средства, используют последние достижения в физике, механике, электронике, оптике, вычислительной технике. По разнообразию решаемых народнохозяйственных задач геодезия подразделяется на ряд самостоятельных дисциплин, каждая из которых имеет свой предмет изучения:

— высшая геодезия (гравимметрия, космическая геодезия, астрономическая геодезия) изучает форму и размеры Земли, занимается высокоточными измерениями с целью определения координат отдельных точек земной поверхности в единой государственной системе координат;

— топография и гидрография развивают методы съемки участков земной поверхности и изображения их на плоскости в виде карт, планов и профилей;

— фотограмметрия занимается обработкой фото-, аэрофото- и космических снимков для составления карт и планов;

— картография рассматривает методы составления и издания карт;

— маркшейдерия — область геодезии, обслуживающая горнодобывающую промышленность и строительство тоннелей;

— инженерная (прикладная) геодезия изучает методы геодезических работ, выполняемых при изысканиях, проектировании, строительстве и эксплуатации различных зданий и сооружений, а также рациональном использовании и охране природных ресурсов.

Задачами инженерной геодезии являются:

1) топографо-геодезические изыскания различных участков, площадок и трасс с целью составления планов и профилей;

2) инженерно-геодезическое проектирование — преобразование рельефа местности для инженерных целей, подготовка геодезических данных для строительных работ;

3) вынос проекта в натуру, детальная разбивка осей зданий и сооружений;

4) выверка конструкций и технологического оборудования в плане и по высоте, исполнительные съемки;


5) наблюдения за деформациями зданий и сооружений.

При топографо-геодезических изысканиях выполняют:

а) измерение углов и расстояний на местности с помощью геодезических приборов (теодолитов, нивелиров, лент, рулеток и др.);

б) вычислительную (камеральную) обработку результатов полевых измерений на ЭВМ;

в) графические построения планов, профилей, цифровых моделей местности (ЦММ).

Системы координат, используемые в геодезии

Положение пунктов на физической поверхности Земли определяется в различных системах координат. Рассмотрим некоторые из них.

Географические координаты (долгота lи широта j) являются обобщенным понятием ас­трономических и геодезических координат и используются в случаях, когда нет необходимости учитывать разницу между названными координатами. Астрономические широту и долготу опре­деляют с помощью специальных приборов относительно уровенной поверхности и направления

силы тяжести. При проецировании астрономических координат на поверхность земного рефе­ренц-эллипсоида получают геодезические широту и долготу.

Прямоугольные местные координаты являются производными от зональной системы координат Гаусса-Крюгера (см. п.7) и распространяются на небольшой по площади территории. Ось абсцисс совмещают с меридианом некоторой точки участка либо ориентируют параллельно основным осям инженерных сооружений. Координатные четверти нумеруют по часовой стрелке и именуют по сторонам света: I-СВ, II-ЮВ, III-ЮЗ, IV-СВ.

Полярная система координат определяет положение точки на плоскости полярным гори­зонтальным углом, отсчитываемым от некоторого начального направления, и горизонтальным проложением.

Спутниковые системы определения координат (российская Глонасс и американская GPS), в состав которых входят: комплекс наземных станций автоматического наблюдения за спутниками, искусственные спутники Земли с радиусом орбит около 26 000 км и приемная аппаратура потребителей.

При функционировании системы пространственное положение спутников определяют с наземных станций наблюдений, равномерно расположенных по всему миру и имеющих определенные пространственные координаты. Все станции связаны с головной станцией управления высокоскоростными линиями передачи данных и уточнения параметров орбит спутников в единой системе координат.

Спутники передают периодически уточняемые эфемириды — набор координат, которые определяют положение спутников на орбите в различные моменты времени. Под влиянием гравитационного поля Земли и других факторов параметры исходных координат спутниковых систем изменяются и поэтому постоянно уточняются. В настоящее время точность «бортовых эфемирид», которые получают путем экстраполяции уточненной орбиты на несколько дней вперед, составляет 20-100 м, а при использовании специальных методов обработки — около 1 м.

При эксплуатации системы GPS определение местоположения предусмотрено в Мировой системе координат 1984 г (WGS-84). Начало координат в этой системе находится в центре масс Земли, ось Z параллельна направлению на условный земной полюс, ось X определяется плоскостями начального меридиана WGS-84 и экватора. Начальный меридиан WGS-84 параллелен нулевому меридиану, закрепленному координатами станций наблюдений. Ось Y дополняет систему координат до правой. Начало и положение осей координат системы WGS-84 совпадают с геометрическим центром и осями общеземного эллипсоида WGS-84.

В России создана геодезическая система координат ПЗ-90 (параметры Земли 1990 г). Она закрепляется 30 опорными пунктами на территории бывшего СССР, координаты которых получены методами космической геодезии.

>
«

»

Тема 3. ОСНОВНЫЕ СИСТЕМЫ КООРДИНАТ, ПРИМЕНЯЕМЫЕ В ГЕОДЕЗИИ

ВВЕДЕНИЕ

Координаты — это величины, определяющие положение любой точки на поверхности или в пространстве относительно принятой системы координат.
Система координат устанавливает начальные (исходные) точки, поверхности или линии отсчета необходимых величин — начало отсчета координат, единицы их исчисления. В топографии и геодезии наибольшее применение получили системы географических, прямоугольных и полярных координат.

Система географических координат применяется для определения положения точек Земли на эллипсоиде или шаре. Исходными плоскостями в этой системе являются плоскости начального меридиана и экватора, а координатами — угловые величины: долгота и широта точки.
Из первой темы известно, что меридиан — это линия сечения эллипсоида плоскостью проходящей через данную точку и полярную ось вращения Земли.
Параллелью называют линию сечения эллипсоида плоскостью, проходящей через данную точку и перпендикулярную земной оси РР’. Параллель, проходящая через центр эллипсоида, называется экватором.
Географические координаты могут быть получены на основании астрономических наблюдений или геодезических измерений. В первом случае их называют астрономическими, во втором — геодезическими. При астрономических наблюдениях проектирование точек на поверхность осуществляется отвесными линиями, при геодезических измерениях — нормалями, поэтому величины астрономических и геодезических географических координат несколько отличаются.
К системам координат, которые наиболее часто применяют в геодези, относятся геодезическая, астрономическая, сферическая, плоская прямоугольная, полярная и биполярная.

3.1. ГЕОДЕЗИЧЕСКАЯ СИСТЕМА КООРДИНАТ

Геодезическими координатами называются угловые величины (широта и долгота), определяющие положение точек (объектов) на поверхности земного эллипсоида (референц-эллипсоида) относительно плоскости экватора и начального меридиана.
Геодезической широтой (В) называется угол, заключенный между плоскостью экватора и нормалью к поверхности земного эллипсоида, проходящей через данную точку.

Рис. 3.1. Геодезическая система координат

Счет геодезических широт ведется от 0 до 90° к северу и к югу от экватора. Геодезические широты Северного полушария называются северными и имеют знак » + «, а Южного — южными и имеют знак «—». Геодезическая широта измеряется центральным углом в плоскости меридиана.
Геодезическая широта (в градусах) показывает, насколько данная точка на земном эллипсоиде расположена севернее или южнее плоскости экватора.
Геодезическая широта для точек, расположенных на экваторе, будет равна 0°, а для точек, расположенных на полюсах ± 90°.
Геодезической долготой (L) называется двугранный угол, заключенный между плоскостью начального меридиана и плоскостью геодезического меридиана, проходящего через данную точку.
В старину в отдельных государствах за начальный меридиан принимали меридиан, проходящий через свою главную обсерваторию. В настоящее время в Украине и в большинстве стран мира для единообразия в определении долгот условились начальным считать Гринвичский меридиан, проходящий через астрономическую обсерваторию в Гринвиче (близ Лондона). От этого меридиана ведется счет так называемого международного гринвичского времени.
Геодезическая долгота измеряется либо центральным углом в плоскости экватора или параллели, либо дугой экватора от начального (Гринвичского) меридиана до меридиана, проходящего через данную точку (М), в пределах от 0 до 180° к востоку или к западу. Геодезические долготы для точек, расположенных к востоку от меридиана Гринвича до 180°, называются восточными и считаются положительными, а к западу – западными и считаются отрицательными.
Восточная долгота обозначается буквами (в.д.) или знаком » + «, западная долгота — буквами (з.д.) или знаком » – «.
Геодезическая система координат, отнесенная к эллипсоиду Красовского, была разработана в 1942 – 1943 годах, поэтому она получила название системы координат 1942 года. Вместе с ней была принята Балтийская система высот, по которой ведется отсчет абсолютных высот относительно нуля Кронштадтского футштока (Футшток — специальная рейка с делениями).

3.2. АСТРОНОМИЧЕСКАЯ СИСТЕМА КООРДИНАТ

Астрономические координаты определяют положение точки на поверхности геоида. Их можно получить путем астрономических измерений с помощью геодезических инструментов или путем математической обработки результатов геодезических измерений.
Астрономической широтой (φ) называется угол, заключенный между плоскостью земного экватора и направлением отвесной линии в данной точке.
Астрономическая широта измеряется от 0 до 90° к северу и к югу от экватора. В Северном полушарии астрономические широты называются северными, а в Южном — южными.
Отвесная линия в общем случае не совпадает с направлением нормали к поверхности земного эллипсоида. Поскольку различные по плотности массы в теле Земли распределены неравномерно, то отклонение отвесной линии (силы тяжести) от нормали различное в разных точках Земли. Так, например, в районе Кавказа отклонения отвесных линий от нормалей достигают 35″, а разность отклонений отвесных линий на противоположных берегах озера Байкал достигает 40″. В среднем величина отклонений равна 4 – 5″ (рис. 3.2).

Рис. 3.2. Астрономическая система координат

Астрономической долготой (λ) называется двугранный угол, заключенный между плоскостью начального астрономического меридиана и плоскостью астрономического меридиана, проходящего через данную точку.
Поскольку плоскость астрономического меридиана проходит через отвесную линию в данной точке на поверхности Земли, а плоскость геодезического меридиана проходит через нормаль к поверхности эллипсоида, следовательно, плоскости астрономического и геодезического меридианов не совпадают. В результате этого геодезическая широта, долгота и геодезический азимут в данной точке отличаются от астрономической широты, долготы, и астрономического (истинного) азимута. Эти расхождения будут увеличиваться там, где наблюдаются большие отклонения отвесной линии от нормали, а также в тех точках геоида, где его поверхность дальше удалена от поверхности эллипсоида.
Геодезическая и астрономическая системы координат различаются как две отдельные системы при определении местоположения объектов с точностью до 1″ (в линейной величине до 20 – 30 м). Зная астрономические координаты, можно вычислить геодезические координаты путем ввода поправок на уклонение отвесных линий от нормалей, определяемых астрономо-геодезическим методом или по специальным гравиметрическим картам.

3.3. СФЕРИЧЕСКАЯ СИСТЕМА КООРДИНАТ

При решении ряда геодезических задач и составлении карт мелких масштабов Землю принимают за сферу. Положение точек местности на сфере определяется сферическими координатами: сферической широтой и сферической долготой.
Сферическими координатами называются угловые величины (широта и долгота), определяющие положение точек местности на поверхности земной сферы относительно плоскости экватора и начального меридиана (рис. 3.2).
Сферической широтой (φ) называется угол, заключенный между плоскостью экватора и направлением из центра земной сферы на данную точку. Сферическая широта измеряется центральным углом или дугой меридиана в тех же пределах, что и геодезическая широта – от 0 до 90° к северу и к югу от экватора. Сферические широты в Северном полушарии называются северными и обозначаются знаком «+», а в Южном – южными и обозначаются знаком «–».
Сферической долготой (λ) называется двугранный угол, заключенный между плоскостью начального меридиана и плоскостью меридиана, проходящего через данную точку.
Сферическая долгота измеряется либо центральным углом в плоскости экватора или в плоскости параллели, либо дугой экватора или дугой параллели от началь­ного (Гринвичского) меридиана до меридиана, проходящего через данную точку в пределах от 0 до 180° к востоку и к западу.

Рис. 3.3. Сферическая система координат

Сферические долготы для точек, расположенных к востоку от Гринвичского меридиана до 180°, называются восточными и считаются положительными, а к западу — западными и считаются отрицательными. При решении некоторых практических задач сферическая долгота отсчитывается от 0 до 360° только к востоку от Гринвичского меридиана.
Все вычисления, связанные с автоматизированным определением координат, углов и расстояний, решаются на поверхности земной сферы с использованием формул сферической тригонометрии, поэтому поверхность земного эллипсоида проектируется на поверхность сферы.
В практике часто пользуются сферой радиусом R = 6371 км, поверхность которой равна поверхности эллипсоида. При этом максимальные погрешности в определении расстояний достигают 0,5% и углов не более 0,4°.
Длина дуги большого круга на сфере в 1секунду, равная 1852 м, называется морской милей.
Вышеназванные погрешности не позволяют реализовать точность современных средств автоматизированного определения координат. Поэтому в современных вычислителях с ЦВМ применяется формулы с учетом сжатия Земли. При этом максимальные искажения расстояний составляют 0,08% — 0,17%, а искажения углов практически отсутствуют.

3.4. ПОЛЯРНАЯ И БИПОЛЯРНАЯ СИСТЕМЫ КООРДИНАТ

Полярными координатами называются угловая и линейная величины, определяющие положение точки на плоскости относительно начала координат, принимаемого за полюс, и полярной оси. Местоположение любой точки определяется углом положения, отсчитанным от полярной оси до направления на определяемую точку, и расстоянием от полюса до этой точки (рис. 3.4).

Рис. 3.4. Полярная система координат

За полярную ось могут быть приняты: истинный или магнитный меридиан, вертикальная линия сетки и направление на любой ориентир.
При работе на местности за полярную ось принимают северное направление магнитного меридиана или направление на какой-нибудь ориентир с точки стояния.

Биполярными координатами называются две угловые или две линейные величины, определяющие местоположение точки на плоскости относительно двух исходных точек (полюсов). Положение любой точки на карте или на местности определяется двумя координатами. Этими координатами могут быть два угла положения либо два расстояния от полюсов до определяемой точки (рис. 3.5, 3.6).

Рис. 3.5. Определение места точки по двум дирекционным углам

Рис. 3.6. Определение места точки по двум дальностям

3.5. СИСТЕМА ПЛОСКИХ ПРЯМОУГОЛЬНЫХ КООРДИНАТ

Плоскими прямоугольными геодезическими координатами (прямоугольными координатами) называются линейные величины — абсцисса и ордината,— определяющие положение точки на плоскости относительно исходных направлений.

Рис. 3.7. Система плоских прямоугольных координат

Исходными направлениями служат две взаимно перпендикулярные линии (рис. 3.7) с началом отсчета в точке их пересечения (О). Прямая XX является осью абсцисс, а прямая УУ, перпендикулярная к оси абсцисс, — осью ординат. В такой системе положение любой точки на плоскости определяется кратчайшим расстоянием до нее от осей координат. Так, положение точки А определяется длиной перпендикуляров ха и уа. Отрезок ха называется абсциссой точки А, а уа — ординатой. Выражаются абсциссы и ординаты в линейной мере (обычно в метрах).
В геодезии и топографии принята правая система прямоугольных координат: это отличает ее от левой системы координат, используемой в математике. Четверти системы координат (название которых определяется принятыми обозначениями стран света), нумеруются по ходу часовой стрелки. В такой системе упрощается измерение углов ориентирования.
Абсциссы точек, расположенных вверх от начала координат, считаются положительными, а вниз от нее — отрицательными.
Ординаты точек, расположенных вправо от начала координат, считаются положительными, а влево от нее — отрицательными (см. табл. 1.2).

Таблица 1.1

>Четверти

3.6. ОПРЕДЕЛЕНИЕ ГЕОДЕЗИЧЕСКИХ КООРДИНАТ ТОЧЕК ПО КАРТЕ

Топографические карты печатаются отдельными листами, размеры которых установлены для каждого масштаба. Боковыми рамками листов служат меридианы, а верхней и нижней рамками – параллели. (рис. 3.9). Следовательно, географические координаты можно определить по боковым рамкам топографической карты. На всех картах верхняя рамка всегда обращена на север.
Географическую широту и долготу подписывают в углах каждого листа карты. На картах Западного полушария в северо-западном углу рамки каждого листа правее значения долготы меридиана помещают надпись: «К западу от Гринвича».
На картах масштабов 1 : 25 000 – 1 : 200 000 стороны рамок разделены на отрезки, равные 1′ (одной минуте, рис. 3.8). Эти отрезки оттенены через один и разделены точками (кроме карты масштаба 1 : 200 000) на части по 10″ (десять секунд). На каждом листе карты масштабов 1 : 50 000 и 1 : 100 000 показывают, кроме того, пересечение среднего меридиана и средней параллели с оцифровкой в градусах и минутах, а по внутренней рамке – выходы минутных делений штрихами длиной 2 – 3 мм. Это позволяет при необходимости прочерчивать параллели и меридианы на карте, склеенной из нескольких листов.

Рис. 3.8. Боковые рамки карты

При составлении карт масштабов 1 : 500 000 и 1 : 1 000 000 на них наносят картографическую сетку параллелей и меридианов. Параллели проводят соответственно через 20′ и 40′ (минут), а меридианы – через 30′ и 1°.
Географические координаты точки определяют от ближайшей параллели и от ближайшего меридиана, широта и долгота которых известны. Например, для карты масштаба 1 : 50 000 «ЗАГОРЯНИ» ближайшими параллелями будут параллели с широтами 54º40′ и 54º50′, а ближайшими меридианами будут меридиан с долготами 18º00′ и 18º15′ (рис. 3.10).

Рис. 3.9. Определение географических координат

Для определения широты заданной точки необходимо:

  • одну ножку циркуля-измерителя установить на заданную точку, другую ножку по кратчайшему расстоянию установить на ближайшую параллель (для нашей карты 54º40′);
  • не меняя раствор циркуля-измерителя установить его на боковую рамку с минутными и секундными делениями, одна ножка должна быть на южной параллели (для нашей карты 54º40′), а другая – между 10-секундными точками на рамке;
  • посчитать количество минут и секунд от южной параллели до второй ножки циркуля-измерителя;
  • добавить полученный результат к южной широте (для нашей карты 54º40′).

Для определения долготы заданной точки необходимо:

  • одну ножку циркуля-измерителя установить на заданную точку, другую ножку по кратчайшему расстоянию установить на ближайший меридиан (для нашей карты 18º00′);
  • не меняя раствор циркуля-измерителя установить его на ближайшую горизонтальную рамку с минутными и секундными делениями (для нашей карты нижнюю рамку), одна ножка должна быть на ближайшем меридиане (для нашей карты 18º00′), а другая – между 10-секундными точками на горизонтальной рамке;
  • посчитать количество минут и секунд от западного (левого) меридиана до второй ножки циркуля-измерителя;
  • добавить полученный результат к долготе западного меридиана (для нашей карты 18º00′).

Обратите внимание на то, что данный способ определения долготы заданной точки для карт масштаба 1:50 000 и мельче имеет погрешность за счет схождения меридианов, ограничивающих топографическую карту с востока и запада. Северная сторона рамки будет короче, чем южная. Следовательно, расхождения между измерениями долготы на северной и южной рамке могут отличаться на несколько секунд. Чтобы добиться высокой точности в результатах измерений необходимо определить долготу и по южной и по северной стороне рамки, а затем произвести интерполяцию.
Для повышения точности определения географических координат можно использовать графический метод. Для этого необходимо соединить прямыми линиями ближайшие к точке одноименные десятисекундные деления по широте к югу от точки и по долготе к западу от нее. Затем определить размеры отрезков по широте и долготе от прочерченных линий до положения точки и суммировать их соответственно с широтой и долготой прочерченных линий.
Точность определения географических координат по картам масштабов 1 : 25 000 – 1 : 200 000 составляет 2′′ и 10′′ соответственно.

Вопросы и задания для самоконтроля

  1. Какие плоскости в системе географических координат являются исходными?
  2. Дайте определения «геодезические координаты», «геодезическая широта», «геодезическая долгота».
  3. В каких пределах измеряется геодезическая широта и геодезическая долгота?
  4. Чему равна геодезическая широта точек, расположенных на экваторе и на южном полюсе?
  5. Дайте определения «астрономические координаты», «астрономическая широта», «астрономическая долгота».
  6. Дайте определения «сферические координаты», «сферическая широта», «сферическая долгота».
  7. Чем обусловлена морская миля и какова ее длина?
  8. Какие координаты называют полярными?
  9. Какими величинами определяют положение точки в полярной системе координат?
  10. Какими величинами определяют положение точки в биполярной системе координат?
  11. Какими величинами определяют положение точки в плоской прямоугольной системе координат?
  12. Какие знаки имеют плоские прямоугольные координаты х и у в I, II, III и IV четвертях?

Видео

Прямоугольные координаты (в геодезии)

Смотреть что такое «Прямоугольные координаты (в геодезии)» в других словарях:

  • Координаты (в геодезии) — Координаты в геодезии, совокупность трёх чисел, определяющих положение точки земной поверхности относительно некоторой исходной поверхности. Последняя, так называемая поверхность относимости, суть поверхность, заменяющая в некотором приближении… … Большая советская энциклопедия

  • Прямоугольные координаты — I Прямоугольные координаты (математические) частный случай аффинных (общих декартовых) координат. В П. к. оси попарно перпендикулярны, а единичные отрезки по осям равны между собой. См. Координаты. II Прямоугольные координаты в… … Большая советская энциклопедия

  • Плоские геодезические прямоугольные координаты — (a. planimetric rectangular geodesic coordinates; н. ebene rechtwinklige geodatische Koordinaten; ф. coordonnees geodesiques planes rectangulaires; и. coordenadas geodesicas pianos rectangulares) пары чисел, определяющие положение точек… … Геологическая энциклопедия

  • Координаты — I Координаты , числа, заданием которых определяется положение точки на плоскости, на любой поверхности или в пространстве. Первыми вошедшими в систематическое… … Большая советская энциклопедия

  • Координаты — (от лат. co приставка, означающая совместность, и ordinatus упорядоченный, определённый * a. coordinates; н. Koordinaten; ф. coordonnees; и. coordenadas) числа, величины, определяющие положение точки в пространстве. B геодезии, топографии … Геологическая энциклопедия

  • координаты плоские прямоугольные — В геодезии – система прямоугольных координат на плоскости, на которой отображается по определённому математическому закону поверхность земного эллипсоида … … Справочник технического переводчика

  • КООРДИНАТЫ ПЛОСКИЕ ПРЯМОУГОЛЬНЫЕ — в геодезии система прямоугольных координат на плоскости, на которой отображается по определённому математическому закону поверхность земного эллипсоида (Болгарский язык; Български) плоски правоъгълни координата (Чешский язык; Čeština) pravoúhlé… … Строительный словарь

  • Координатная сетка — в топографии, сеть координатных линий x = const и у = const (см. Прямоугольные координаты в геодезии) на топографических картах, составляемых обычно в проекции Гаусса Крюгера (см. Геодезические проекции). Линии К. с. параллельны… … Большая советская энциклопедия

  • Геодезия — (греч. geōdaisía, от gē Земля и dáiō делю, разделяю) наука об определении фигуры, размеров и гравитационного поля Земли и об измерениях на земной поверхности для отображения её на планах и картах, а также для проведения различных… … Большая советская энциклопедия

  • Картографические проекции — отображения всей поверхности земного эллипсоида (См. Земной эллипсоид) или какую либо её части на плоскость, получаемые в основном с целью построения карты. Масштаб. К. п. строятся в определённом масштабе. Уменьшая мысленно… … Большая советская энциклопедия

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *