Прочность фанеры на изгиб

Расчет допустимых пролетов фанеры (шаг поперечных балок а)

Элемент опалубки перекрытия, воспринимающий давление бетона и все остальные нагрузки, это фа­нера. Выше упомянутые виды фанеры имеют в зави­симости от направления работы разные значения как для модуля упругости, так и для предела прочности на изгиб:
— в перекрытиях с низкими требованиями к повер­хности f — в перекрытиях с более высокими требованиями к поверхности f Прогиб фанеры (0 зависит от нагрузки (толщины перекрытия), характеристик самой фанеры (модуль упругости, толщина листа) и условий опирания.
В приложении 1 (рис. 2.65) показаны диаграммы на основные виды фанеры, поставляемые фирмой PERI — березовая фанера (Fin-Ply и PERI Birch) и хвой­ная фанера (PERI-Spruce). Диаграммы составлены для толщины листа 21 мм. При этом пунктиром вы­делены области, где прогиб превышает 1/500 про­лета. Все линии заканчиваются при достижении пре­дела прочности фанеры. Основные диаграммы со­ставлены для стандартных листов, работающих как многопролетные неразрезные балки (минимум три пролета).
Для ходовых размеров листов получаются следую­щие варианты шага поперечных балок.
Таблица 2.7

При оценке прогибов при доборе: для березовой фанеры принимают те же значения для модуля уп­ругости и предела прочности, как и для основных ли­стов, так как не всегда известно, в каком направле­нии кладутся доборные листы. Для хвойной фанеры,
у которой при повороте листа резко меняются эти ха­рактеристики.
По диаграмме (рис. 2.65) для березовой фанеры с 3 или больше пролетами мы по оси X находим наше значение толщины перекрытия (20 см) и определяем значения для прогибов:

Для нашей длины листа приемлемы два варианта — либо 50 см, либо 62,5 см. Остановимся на втором ва­рианте, так как он дает экономию по количеству попе­речных балок. Максимальный прогиб при этом состав­ляет 1,18 мм. Смотрим в диаграмму для однопролет­ной системы. При такой схеме линия для пролета 60 см как раз на значении толщины перекрытия в 20 см заканчивается (предел прочности фанеры). Про­гиб при этом составляет 1,92 мм.
Из этого следует, что для избежания завышенных деформаций добора следует либо ограничить пролет этого добора до 50 см, либо поставить под этот добор дополнительную поперечную балку (расчетная схема равномерно нагруженной 2-пролетной балки имеет самые маленькие значения по прогибам, но она имеет увеличенный по отношению к многопролетным схемам опорный момент).
Определение пролета поперечных балок (шаг продольных балок Ь)
Согласно выбранному в предыдущем пункте шагу поперечных балок проверяем по соответствующей на­шему типу балок табл. 2.11 максимально допустимый пролет этих балок. Как уже выше упоминалось, эти таб­лицы составлены с учетом всех расчетных случаев, для поперечных балок прежде всего момент и прогиб.
При выборе шага продольных балок необходимо учесть, что крайняя продольная балка находится на расстоянии 15-30 см от стены. Увеличение этого раз­мера может привести к следующим неприятным ре­зультатам:
— увеличению и неравномерности прогибов на кон­солях поперечных балок;

— возможности опрокидывания поперечных балок во время арматурных работ.
Уменьшение усложняет управление стойками и со­здает опасность соскальзывания поперечных балок с продольных.
По той же причине, а также с учетом нормальной работы конца балки (особенно при использовании ба­лок-ферм) назначается минимальный нахлест балок в 15 см на каждой стороне. Фактический шаг продоль­ных балок ни в коем случае не должен превышать до­пустимое значение по табл. 2.11 и 2.12. Вспомните, что пролет в формуле для определения момента присут­ствует в квадрате, а в формуле прогиба даже в четвер­той степени (соответственно формулы 2.1 и 2.2).
Пример
Для простоты выбираем прямоугольное помеще­ние внутренними размерами 6,60×9,00 м. Толщина пе­рекрытия 20 см, фанера PERI Birch толщиной 21 мм и размерами листа 2500×1250 мм.
Допустимое значение для пролета поперечных ба­лок при их шаге в 62,5 см найдем по табл. 2.11 для ба­лок-ферм GT 24. В первом столбце таблицы найдем толщину 20 см и двигаемся вправо до соответствую­щего шага поперечных балок (62,5 см). Находим пре­дельно допустимое значение пролета 3,27 м.
Приводим расчетные значения момента и прогиба для этого пролета:
— максимальный момент в момент бетонирования — 5,9 кНм (допустимо 7 кНм);
— максимальный прогиб (однопролетная балка) — 6,4 мм = 1/511 пролета.
Если продольные балки ставим параллельно дли­ной стороне помещения, получаем:
6,6 м — 2• (0,15 м) = 6,3 м; 6,3:2 = 3,15 м 3,27 м; 8.7:3 = 2,9 мПолучаем три пролета с длиной балок 3,30 м (ми­нимум 2,9 + 0,15 + 0,15 = 3,2 м). Поперечные балки ме­нее нагружены — чаще всего это уже признак перерас­хода материала.
В некоторых случаях, например, при необходимос­ти установки опалубки вокруг заранее установленного крупногабаритного оборудования приходится рассчи­тывать балки. При этом следует учитывать следующие предпосылки. Как расчетная схема в системах типа «MULTIFLEX» рассматривается всегда только однопро­летная шарнирно опертая балка без консолей, так как при установке опалубки и во время бетонирования все­гда имеем промежуточные стадии, где балки работают именно по такой схеме. Для больших пролетов балок без дополнительной поддержки возможна потеря устойчи­вости уже при маленьких нагрузках. Любая опалубка перекрытия после бетонирования должна вытаскивать­ся из-под готового перекрытия, иногда из замкнутого помещения, поэтому желательно ограничивать длину балок (проблема веса и маневренности).
В случае отсутствия значений в таблице ею все же можно воспользоваться. Например, чтобы увеличить пролет, хотите уменьшить шаг балок — в результате дол­жны проверить допустимость пролета. Например, бал­ки решили ставить с шагом 30 см, толщина перекры­тия составляет 22 см. Расчетная нагрузка составляет согласно таблице 7,6 Н/м2. Умножаем эту нагрузку на шаг балок: 7,6-0,3 = 2,28 кН/м. Делим эту величину на один шаг поперечных балок, которые в таблице при­сутствуют: 2,28:0,4 = 5,7 ~ 6,1 (нагрузка на перекрытия толщиной 16 см); 2,28:0,5 = 4,56 — 5,0 (нагрузка на пе­рекрытия толщиной 12 см).
В первом случае находим для толщины перекрытия 16 см и шага балок 40 см пролет 4,07 м, во втором слу­чае — толщина 12 см и шаг 50 см — 4,12 м.

Можем принимать меньшее из двух значений ми­нус разность этих значений (учет изменения времен­ной нагрузки, которая присутствует только в расчете на момент), не теряя время на длительные расчеты. В конкретном примере получается при точном расчете
4,6 м, а приняли 4,02 м.

OSB и фанера – близнецы-братья?

Главное различие между этими материалами заключается в том, что фанера изготавливается из нескольких слоев шпона, а для производства OSB используется древесная щепа – фактически отходы деревообработки. Соответственно отличается и их внешний вид. Фанера имеет ровную поверхность с естественной древесной структурой, а ОСП похожа на спрессованную россыпь щепок и крупных стружек.

Название OSB – это аббревиатура слов Oriented Strand Boards, что означает «Ориентированно-Стружечная Плита». ОСП – это аббревиатура перевода на русский язык, а ОСБ – транслитерация англоязычного названия.

В остальном эти плиты очень похожи. Щепа в OSB располагается в три слоя, в каждом из которых она ориентирована перпендикулярно смежным слоям.

Структура шпона в смежных слоях фанеры также располагается под прямыми углами друг к другу.

Прочность на изгиб у обоих материалов зависит от направления изгиба – вдоль или поперек структуры внешних слоев. Для склеивания фанеры и для формования ОСП применяются одинаковые связующие – карбамидные и фенольные смолы.

Отличия в исходных материалах и технологиях формирования плит дает расхождение не только во внешнем виде, но и в технических характеристиках, и эти различия могут определять ответ на вопрос, что лучше, ОСП или фанера для каждого конкретного случая.

Учитывая, что существует несколько марок OSB и фанеры, различающихся по своим параметрам, для корректного сравнения мы будем использовать OSB-3 и фанеру марок ФК и ФСФ, поскольку эти версии материалов чаще всего применяются для самых разных целей. Для корректного использования нормативных данных, в сравнении участвуют плиты толщиной до 30 мм.

Что прочнее фанера или OSB

Говоря о прочности листовых и плитных материалов, обычно, имеют в виду прочность на изгиб. Предел прочности – это максимальное напряжение при изгибе, не приводящее к разрушению материала.

Еще один важный аспект прочности – это стойкость к расслоению, которая определяется по разному для различных материалов, но имеет один и тот же практический смысл.

Прочность при нормальных условиях

По ГОСТ Р 56309-2014 нормативная прочность на изгиб вдоль основной оси для OSB-3 колеблется от 16 до 22 МПа в зависимости от толщины листа. В поперечном направлении прочность в два раза ниже.

Технические параметры фанеры определяет ГОСТ 3916.1-96. В соответствии с ним прочность фанеры на изгиб вдоль волокон внешних слоев составляет 25–60 МПа в зависимости от вида используемой древесины и марки фанеры.

То есть, сравнение по прочности явно в пользу фанеры. Это и не удивительно. Естественная структура древесины, сохраняемая в шпоне, намного лучше держит нагрузки на растяжение, чем агломерат из щепы и связующего.

Фанера имеет в 2–4 раза более высокую прочность на изгиб, чем OSB.


Влагостойкость

Для определения влагостойкости материалов существует множество разных методик, и в них применяются разные контрольные параметры. Для того, чтобы наше сравнение было корректным, выберем данные, полученные при одинаковом методе испытаний, зафиксированные в ГОСТах № Р 56309-2014 и 3916.1-96. Это метод испытания кипячением опытного образца.

После воздействия кипячением прочность OSB-3 на изгиб понижается до 6–9 МПа, то есть, примерно вдвое по сравнению с исходной. Прочность фанеры на изгиб при таком воздействии меняется мало и не нормируется из-за того, что даже интенсивное увлажнение с последующей сушкой практически не влияет на прочность древесных волокон, а именно этим определяется прочность слоистой плиты из шпона.

Наибольшее влияние влажность оказывает на стойкость плит к расслоению. Именно ослабление связей между древесными частями материала является главной причиной снижения прочности на изгиб для ОСП.

Прочность на разрыв в направлении, перпендикулярном плоскости плиты для ОСП и для фанеры измеряется по разному, но одинаковая размерность результатов дает возможность их сравнения.

Прочность фанеры на скалывание по клеевому слою после кипячения составляет 0,6–1,5 МПа, а прочность ОСП-3 на разрыв в направлении поперек пласти – 0,06–0,15 МПа. Здесь, как видим, прочность отличается на порядок.

Фанера обладает более высокой влагостойкостью, чем OSB за счет того, что в каждом ее слое сохраняется единая древесная структура, не фрагментированная, как в случае плиты из стружки.

Вопросы эстетики

Сравнивая внешний вид материалов, решая, что лучше, ОСБ или фанера на пол, на облицовку стен или для мебели, следует учитывать несколько факторов.

На первый взгляд, фанера кажется более эстетичной, чем OSB. Но на самом деле она очень многолика. Ее вид определяется породой шпона внешних слоев и его качеством. Низкосортную техническую фанеру вряд ли можно использовать для интерьерной отделки или для фасадных деталей мебели. Она имеет множество сучков и других дефектов.

Для мебели и отделочных работ используют фанеру 1–2 сорта, на поверхности которой дефектов очень мало или вовсе нет. По эстетическим качествам такой материал не уступает дереву-массиву. Фанера более низких сортов в своем чистом виде непригодна для отделки, если не считать ее использования в нестандартных дизайнерских решениях.

В нестандартной отделке можно использовать и OSB. При помощи специальной обработки ее поверхностную структуру можно превратить в неплохое украшение. Но все же, стружечные плиты более уместны в качестве конструкционного или подстилающего материала, который не попадается на глаза.

Прочность фанеры: параметры прочности на изгиб, разрыв

Фанера неспроста считается популярным строительным материалом. Она обладает эстетическими характеристиками, а после обработки становится прочной, упругой и устойчивой к влаге. Это дает возможность существенно расширить сферу её применения. Когда речь идет о способности этого материала сопротивляться деформациям, то в этом случае качество товара определяет два основных критерия – прочность фанеры на разрыв, а также фанера прочность на изгиб.

Безусловно, определение прочностных характеристик фанерных листов – целый процесс, в котором стоит рассматривать множество нюансов. Здесь учитывается порода дерева, состояние сырья, содержание влаги, технология обработки и другие критерии:

  • ударная вязкость – способность поглощать работу при ударе без каких-либо разрушений;
  • износоустойчивость – степень разрушения материала при регулярном воздействии на его поверхность. Опыт показал, что влажная древесина изнашивается намного быстрее, чем сухая;
  • способность удерживать металлические крепления – важное свойство. Дело в том, что установка крепежного элемента способна запустить процессы деформации. Так, если материал недостаточно прочный, то при забивании гвоздя или вкручивании самореза возникает риск, что фанерный лист даст трещину;
  • деформативность – появление деформаций неизбежно при воздействии нагрузок.

В целом фанера – это уникальный стройматериал. Его секрет заключается в технологии укладывания шпона. Последнее представляет собой тонкий слой древесины, срезанного со ствола дерева. Это не самое прочное сырье. Для устранения этого недостатка, его укладывают так, чтобы волокна находились во взаимно перпендикулярных направлениях. Обычно минимальное число таких слоев – 3, а вот максимальное количество в теории может быть неограниченным, хотя на практике редко встречается больше 30.

Прочность фанеры различных марок и толщин

Однако правильность укладывания волокон – не самый главный секрет прочности этого материала. Ведь фанера только частично состоит из дерева, а все остальное представлено клеевым составом, который используют для скрепления каждого слоя. Для этого используются разные вещества:

  • мочевиноформальдегид – смесь карбамидных смол с небольшим количеством формальдегида. Обычно этот состав применяют во время производства товаров марки ФК – экологически чистый и безопасный продукт. Он обладает незаурядными характеристиками в плане прочности, но хорошо справляется с внутренними отделочными работами;
  • фенолформальдегид – здесь главную опасность несет вещество под названием фенол, который является токсичным для человека. Зато он хорошо отталкивает влагу, поэтому используется для производства ФСФ – достаточно прочного и надежного стройматериала;
  • меламиноформальдегид – безопасное вещество, используемое доя изготовления марки ФКМ. Единственный недостаток продукта – высокая стоимость;
  • бакелитовые смолы – дают возможность создавать высокопрочные изделия, с которыми не может сравниться ни одна древесина. Но если уровень гибкости имеет для вас значение, то посредством такой обработки она фактически полностью теряется.

Если вас интересует прочность материала, то при изучении технических характеристик, обратите внимание на показатель плотности. В среднем это значение колеблется в пределах 550-750 кг/м³. Для сравнения плотность бакелитовой фанеры составляет 1200 кг/м³.

Толщина стройматериала тоже имеет значение. Разумеется, что прочность фанеры 10 мм будет ниже, чем у листов с толщиной 12 мм. Эти особенности тоже нужно учитывать.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *