Ремонт инверторных сварок

Особенности ремонта инверторных сварочных аппаратов

В последние годы завоевали популярность инверторные сварочные аппараты. Эта техника относительно недорогая, удобная в работе, позволяющая выполнять большинство работ. По крайней мере, в быту, домашнем строительстве, в гараже.

Все инверторные сварочные аппараты построены, несмо­тря на обилие марок, по одному и тому же принципу. Вы­ходной ток сварочного инвертора достигает 140 А и более при напряжении дуги примерно 25 В. Параметры схемы по­добраны так, чтобы от однофазной сети потреблялась мощ­ность порядка 4-5 кВт. Производитель, как правило, — Ки­тай. У одних пользователей аппараты служат годами, у дру­гих — несколько дней или недель. В большинстве случаев вышедший из строя аппарат можно отремонтировать.

Причин, по которым выходит из строя эта техника не­сколько:

  • попадание внутрь влаги (хотя во многих изделиях платы покрывают лаком) и пыли, особенно металлической. Опыт­ные сварщики рекомендуют пользоваться «болгаркой» в удалении от сварочного аппарата, поскольку его венти­лятор охлаждения затянет проводящую пыль внутрь кор­пуса;
  • некачественные контакты в проводах подключения на­пряжения сети, слишком длинные провода;
  • отказы вентиляторов охлаждения с последующим их за­клиниванием.

Для эффективного ремонта этих изделий необходим ос­циллограф, который следует запитать (от сети 230 В / 50 Гц) через разделительный трансформатор. Для этого можно ис­пользовать силовой трансформатор от старого цветного те­левизора. Включение через трансформатор исключит воз­можное поражение ремонтника током, поскольку вся сило­вая цепь сварочного инвертора гальванически связана с се­тью 230 В / 50 Гц.

Опыт ремонта таких аппаратов показывает, что большин­ство неисправностей связано с отказами реле плавного пу­ска и вторичного источника питания (ВИП). При отказе ВИП аппарат не включается. ВИП обычно вырабатывают напря­жение 12, 15 или 24 В. Мощность его ограничена, почти всегда он работает в тяжелом режиме и при скачках сете­вого напряжения, заклинивании питающихся от него венти­ляторов обдува, сразу выходит из строя. При этом нередко разрушаются обмотки его трансформатора. Трансформатор легко разбирается после 5 минут кипячения в воде и пере­матывается. В качестве межобмоточной изоляции удобно при менять высокотемпературный скотч, а при его отсутствии — ленты, нарезанные из кухонного рукава для запекания.

Наиболее тяжелые случаи — это когда произошел отказ силовых IGBT или FET транзисторов. Просто менять их бес­смысленно — «сгорят» снова. Как правило, «сгорание» сопро­вождается коротким замыканием по цепи сетевого питания. «Прозвонка» мультиметром показывает, что закорочены плюс и минус сглаживающих конденсаторов выпрямителя сети 300 В.

В этом случае сразу выпаиваем все силовые транзисто­ры, все диоды их обвязки и проверяем. Проверяем выпря­мительные диоды сетевого напряжения. Иногда половина силовых транзисторов остается цела (первые включения мож­но будет сделать на них).

Можно попробовать включить инвертор без силовых тран­зисторов. Если ВИП цел, схема включится, щелкнет реле плав­ного пуска, но будет светиться индикатор аварии (напряже­ния на выходе инвертора нет). Если от внешнего источника питания подать на выходные зажимы 25-30 В, индикатор ава­рии должен погаснуть. На выходе платы управления при этом наблюдаются импульсы управления разных частот: с авари­ей 10-20кГц, без аварии — 45-50 кГц. Частоту проверять обя­зательно!

Многие IGBT при частоте импульсов на их затворах 70- 80 кГц выходят из строя. А качество керамических конден­саторов платы управления «сделано в Китае», от которых эта частота зависит, сами знаете какое. Это, кстати, одна из при­чин «беспричинного» выхода из строя силовых транзисторов, просто при включении аппарата.

Нужно проверить наличие и форму импульсов управле­ния непосредственно на контактах входов IGBT, припаяв кон­денсатор номиналом 1500-2000пФ и параллельно резистор 200 Ом вместо затворов. Импульсы должны быть одинако­вые, амплитудой не менее 12 В с некоторым заходом в от­рицательную область напряжений. При малейших отличиях — проверять элементы драйвера.

Во избежание тяжелых повреждений и прогаров в платах первое включение после ремонта лучше делать через последо­вательно включенную в сеть лампу накаливания 230 В 100 Вт.

Только получив одинаковые импульсы управления, мож­но впаять пару транзисторов, даже без радиаторов и попро­бовать включить сварочный инвертор в сеть.

Включили, запустилось. Авария не горит. На выходе ин­вертора 66-80 Вольт. Не спешите варить! Проверьте работу обратной связи по току. При отсутствии балласта, подойдет резистор 2-3 Ом, составленный из нескольких параллельно. Можно поместить его в воду. Ручку регулятора ставим на минимум сварочного тока. Наблюдая осциллографом импуль­сы на затворах выходных транзисторов, кратковременно под­ключаем к выходу сварочного инвертора данную импрови­зированную нагрузку и видим срабатывание петли регулиро­вания по изменению ширины управляющих импульсов под нагрузкой.

Только теперь можно окончательно собрать силовую часть и пробовать варить.

Нередко в петле регулирования, после повреждения сва­рочного инвертора, остаются неисправности, и при попытке варить развивается ничем не ограниченный ток — происхо­дит «бах» с кучей вышедших из строя элементов…

Главное в ремонте — не спешить, двигаясь по порядку, устанавливая силовые транзисторы в последнюю очередь, когда все проверено и просмотрено.

Гамма IGBT транзисторов очень широка по номенклату­ре и ценам. Выбирайте любые, какие вам доступны. Жела­тельно по образцовому фото от проверенного производите­ля выбирать приборы с лазерной гравировкой названия. В некоторых приборах нет встроенных демпферных диодов — такие приборы дешевле, но надежно работать не будут. По­этому проверяйте наличие демпферов заранее по даташиту.

Аркадий Солуня, г. Щучинск, Казахстан
Источник: Электрик №1-2/2018

Устройство сварочного инвертора

Сварочные инверторы в зависимости от моделей работают как от бытовой электрической сети (220 В), так и от трехфазной (380 В). Единственное, что нужно учитывать при подключении аппарата к бытовой сети – это его потребляемая мощность. Если она превышает возможности электропроводки, то работать агрегат при просаженной сети не будет.

Итак, в устройство инверторного сварочного аппарата входят следующие основные модули.

  1. Первичный выпрямительный блок. Этот блок, состоящий из диодного моста, размещен на входе всей электрической цепи аппарата. Именно на него подается переменное напряжение из электросети. Чтобы снизить нагревание выпрямителя, к нему прикреплен радиатор. Последний охлаждается вентилятором (приточным), установленным внутри корпуса агрегата. Также диодный мост имеет защиту от перегрева. Реализована она с помощью термодатчика, который при достижении диодами температуры 90° разрывает цепь.
  2. Конденсаторный фильтр. Подсоединяется параллельно к диодному мосту для сглаживания пульсаций переменного тока и содержит 2 конденсатора. Каждый электролит имеет запас по напряжению не менее 400 В, и по емкости от 470 мкФ для каждого конденсатора.
  3. Фильтр для подавления помех. Во время процессов преобразования тока в инверторе возникают электромагнитные помехи, которые могут нарушать работу других приборов, подключенных к данной электрической сети. Чтобы убрать помехи, перед выпрямителем устанавливают фильтр.
  4. Инвертор. Отвечает за преобразование переменного напряжения в постоянное. Преобразователи, работающие в инверторах, могут быть двух типов: двухтактные полумостовые и полные мостовые. Ниже приведена схема полумостового преобразователя, имеющего 2 транзисторных ключа, на основе устройств серий MOSFET или IGBT, которые чаще всего можно увидеть на инверторных аппаратах средней ценовой категории.Схема же полного мостового преобразователя является более сложной и включает в себя уже 4 транзистора. Данные типы преобразователей устанавливают на самых мощных аппаратах для сварки и соответственно — на самых дорогостоящих.

    Так же, как и диоды, транзисторы устанавливаются на радиаторы для лучшего отвода от них тепла. Чтобы защитить транзисторный блок от всплесков напряжения, перед ним устанавливается RC-фильтр.

  5. Высокочастотный трансформатор. Устанавливается после инвертора и понижает высокочастотное напряжение до 60-70 В. Благодаря включению в конструкцию данного модуля ферритового магнитопровода, появилась возможность снизить вес и уменьшить габариты трансформатора, а также уменьшить потери мощности и повысить КПД оборудования в целом. К примеру, вес трансформатора, имеющего железный магнитопровод и способного обеспечивать ток в 160 А, будет около 18 кг. Но трансформатор с ферритовым магнитопроводом при тех же характеристиках тока будет иметь массу около 0,3 кг.
  6. Вторичный выходной выпрямитель. Состоит из моста, в составе которого находятся специальные диоды, с большой скоростью реагирующие на высокочастотный ток (открытие, закрытие и восстановление занимает около 50 наносекунд), на что не способны обычные диоды. Мост оборудован радиаторами, предотвращающими его перегрев. Также выпрямитель имеет защиту от скачков напряжения, реализованную в виде RC-фильтра. На выходе модуля размещаются две медных клеммы, обеспечивающих надежное подключение к ним силового кабеля и кабеля массы.
  7. Плата управления. Управлением всеми операциями инвертора занимается микропроцессор, который получает информацию и контролирует работу аппарата с помощью различных датчиков, расположенных практически во всех узлах агрегата. Благодаря микропроцессорному управлению, подбираются идеальные параметры тока для сварки разного рода металлов. Также электронное управление позволяет экономить электроэнергию за счет подачи точно рассчитанных и дозированных нагрузок.
  8. Реле плавного пуска. Чтобы во время пуска инвертора не перегорели диоды выпрямителя от высокого тока заряженных конденсаторов, применяется реле плавного пуска.

Причины поломок инверторов

Современные инверторы, особенно сделанные на основе IGBT-модуля, достаточно требовательны к правилам эксплуатации. Объясняется это тем, что при работе агрегата его внутренние модули выделяют много тепла. Хотя для отвода тепла от силовых узлов и электронных плат используются и радиаторы, и вентилятор, этих мер порой бывает недостаточно, особенно в недорогих агрегатах. Поэтому нужно четко следовать правилам, которые указаны в инструкции к аппарату, подразумевающие периодическое выключение установки для остывания.

Обычно это правило называется “Продолжительность включения” (ПВ), которая измеряется в процентах. Не соблюдая ПВ, происходит перегрев основных узлов аппарата и выход их из строя. Если это произойдет с новым агрегатом, то данная поломка не подлежит гарантийному ремонту.

Также, если инверторный сварочный аппарат работает в запыленных помещениях, на его радиаторах оседает пыль и мешает нормальной теплоотдаче, что неизбежно приводит к перегреву и поломке электрических узлов. Если от присутствия пыли в воздухе избавиться нельзя, требуется почаще открывать корпус инвертора и очищать все узлы аппарата от накопившихся загрязнений.

Но чаще всего инверторы выходят из строя, когда они работают при низких температурах. Поломки случаются по причине появления конденсата на разогретой плате управления, в результате чего происходит замыкание между деталями данного электронного модуля.

Основные неисправности агрегата и их диагностика

Как уже говорилось, инверторы выходят из строя из-за воздействия на “жизненно” важные блоки аппарата внешних факторов. Также неисправности сварочного инвертора могут происходить из-за неправильной эксплуатации оборудования или ошибок в его настройках. Чаще всего встречаются следующие неисправности или перебои в работе инверторов.

Аппарат не включается

Очень часто данная поломка вызывается неисправностью сетевого кабеля аппарата. Поэтому сначала нужно снять кожух с агрегата и прозвонить каждый провод кабеля тестером. Но если с кабелем все в порядке, то потребуется более серьезная диагностика инвертора. Возможно, проблема кроется в дежурном источнике питания аппарата. Методика ремонта “дежурки” на примере инвертора марки Ресанта показана в этом видео.

Нестабильность сварочной дуги или разбрызгивание металла

Данная неисправность может вызываться неправильной настройкой силы тока для определенного диаметра электрода.

Совет! Если на упаковке к электродам нет рекомендованных значений силы тока, то ее можно рассчитать по такой формуле: на каждый миллиметр оснастки должно приходиться сварочного тока в пределах 20-40 А.

Также следует учитывать и скорость сварки. Чем она меньше, теме меньшее значение силы тока нужно выставлять на панели управления агрегата. Кроме всего, чтобы сила тока соответствовала диаметру присадки, можно пользоваться таблицей, приведенной ниже.

Сварочный ток не регулируется

Если не регулируется сварочный ток, причиной может стать поломка регулятора либо нарушение контактов подсоединенных к нему проводов. Необходимо снять кожух агрегата и проверить надежность подсоединения проводников, а также, при необходимости, прозвонить регулятор мультиметром. Если с ним все в порядке, то данную поломку могут вызвать замыкание в дросселе либо неисправность вторичного трансформатора, которые потребуется проверить мультиметром. В случае обнаружения неисправности в данных модулях их необходимо заменить либо отдать в перемотку специалисту.

Большое энергопотребление

Чрезмерное потребление электроэнергии, даже если аппарат находится без нагрузки, вызывает, чаще всего, межвитковое замыкание в одном из трансформаторов. В таком случае самостоятельно отремонтировать их не получится. Нужно отнести трансформатор мастеру на перемотку.

Электрод прикипает к металлу

Такое происходит, если в сети понижается напряжение. Чтобы избавиться от прилипания электрода к свариваемым деталям, потребуется правильно выбрать и настроить режим сварки (согласно инструкции к аппарату). Также напряжение в сети может проседать, если аппарат подключен к удлинителю с малым сечением провода (меньше 2,5 мм2).

Нередко падение напряжения, вызывающего прилипание электрода, происходит при использовании слишком длинного сетевого удлинителя. В таком случае проблема решается подключением инвертора к генератору.

Горит перегрев

Если горит индикатор, это свидетельствует о перегреве основных модулей агрегата. Также аппарат может самопроизвольно отключаться, что говорит о срабатывании термозащиты. Чтобы данные перебои в работе агрегата не случались в дальнейшем, опять же требуется придерживаться правильного режима продолжительности включения (ПВ). Например, если ПВ = 70%, то аппарат должен работать в следующем режиме: после 7 минут работы, агрегату выделятся 3 минуты, на остывание.

На самом деле, различных поломок и причин, вызывающих их, может быть достаточно много, и перечислить их все сложно. Поэтому лучше сразу понять, по какому алгоритму проводится диагностика сварочного инвертора в поисках неисправностей. Как проводится диагностика аппарата, можно узнать, посмотрев следующее обучающее видео.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *